
◾ Log in / create account

◾ Connectors
◾ Computers
◾ Cables
◾ Adapters
◾ Circuits
◾ Tables
◾ RND

Page 1 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

Page 2 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

ISA
From HwB

ISA=Industry Standard Architecture

Developed by IBM.

Contents

Page 3 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

◾ 1 Pinout
◾ 2 Technical

◾ 2.1 Physical Design
◾ 2.1.1 8-bit card
◾ 2.1.2 16-bit card

◾ 2.2 Signal Descriptions
◾ 2.2.1 +5, -5, +12, -12
◾ 2.2.2 AEN
◾ 2.2.3 BALE
◾ 2.2.4 BCLK
◾ 2.2.5 DACKx
◾ 2.2.6 DRQx
◾ 2.2.7 IOCS16
◾ 2.2.8 I/O CH CK
◾ 2.2.9 I/O CH RDY
◾ 2.2.10 IOR
◾ 2.2.11 IOW
◾ 2.2.12 IRQx
◾ 2.2.13 LAxx
◾ 2.2.14 MASTER
◾ 2.2.15 MEMCS16
◾ 2.2.16 MEMR
◾ 2.2.17 MEMW
◾ 2.2.18 NOWS
◾ 2.2.19 OSC
◾ 2.2.20 REFRESH
◾ 2.2.21 RESET
◾ 2.2.22 SA0-SA19
◾ 2.2.23 SBHE
◾ 2.2.24 SD0-SD16
◾ 2.2.25 SMEMR
◾ 2.2.26 SMEMW
◾ 2.2.27 T/C

◾ 2.3 8 Bit Memory or I/O Transfer Timing Diagram (4 wait states shown)
◾ 2.4 16 Bit Memory or I/O Transfer Timing Diagram (1 wait state shown)
◾ 2.5 Shortening or Lengthening the bus cycle
◾ 2.6 I/O Port Addresses
◾ 2.7 DMA Read and Write
◾ 2.8 Slave DMA Controller
◾ 2.9 Master DMA Controller
◾ 2.10 Single Transfer Mode
◾ 2.11 Block Transfer Mode
◾ 2.12 Demand Transfer Mode
◾ 2.13 Interrupts on the ISA bus
◾ 2.14 Bus Mastering

Page 4 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

◾ 3 Contributions
◾ 4 Sources

Pinout

62+36 PIN EDGE CONNECTOR MALE at the card.

62+36 PIN EDGE CONNECTOR FEMALE at the computer.

Pin Name Dir Description

A1 /I/O CH CK I/O channel check; active low=parity error

A2 D7 Data bit 7

A3 D6 Data bit 6

A4 D5 Data bit 5

A5 D4 Data bit 4

A6 D3 Data bit 3

A7 D2 Data bit 2

A8 D1 Data bit 1

A9 D0 Data bit 0

A10 I/O CH RDY I/O Channel ready, pulled low to lengthen memory cycles

A11 AEN Address enable; active high when DMA controls bus

A12 A19 Address bit 19

A13 A18 Address bit 18

Page 5 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

A14 A17 Address bit 17

A15 A16 Address bit 16

A16 A15 Address bit 15

A17 A14 Address bit 14

A18 A13 Address bit 13

A19 A12 Address bit 12

A20 A11 Address bit 11

A21 A10 Address bit 10

A22 A9 Address bit 9

A23 A8 Address bit 8

A24 A7 Address bit 7

A25 A6 Address bit 6

A26 A5 Address bit 5

A27 A4 Address bit 4

A28 A3 Address bit 3

A29 A2 Address bit 2

A30 A1 Address bit 1

A31 A0 Address bit 0

B1 GND Ground

B2 RESET Active high to reset or initialize system logic

B3 +5V +5 VDC

B4 IRQ2 Interrupt Request 2

B5 -5VDC -5 VDC

B6 DRQ2 DMA Request 2

B7 -12VDC -12 VDC

B8 /NOWS No WaitState

B9 +12VDC +12 VDC

B10 GND Ground

B11 /SMEMW System Memory Write

B12 /SMEMR System Memory Read

B13 /IOW I/O Write

B14 /IOR I/O Read

B15 /DACK3 DMA Acknowledge 3

B16 DRQ3 DMA Request 3

B17 /DACK1 DMA Acknowledge 1

Page 6 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

B18 DRQ1 DMA Request 1

B19 /REFRESH Refresh

B20 CLOCK System Clock (67 ns, 8-8.33 MHz, 50% duty cycle)

B21 IRQ7 Interrupt Request 7

B22 IRQ6 Interrupt Request 6

B23 IRQ5 Interrupt Request 5

B24 IRQ4 Interrupt Request 4

B25 IRQ3 Interrupt Request 3

B26 /DACK2 DMA Acknowledge 2

B27 T/C Terminal count; pulses high when DMA term. count
reached

B28 ALE Address Latch Enable

B29 +5V +5 VDC

B30 OSC High-speed Clock (70 ns, 14.31818 MHz, 50% duty
cycle)

B31 GND Ground

C1 SBHE System bus high enable (data available on SD8-15)

C2 LA23 Address bit 23

C3 LA22 Address bit 22

C4 LA21 Address bit 21

C5 LA20 Address bit 20

C6 LA18 Address bit 19

C7 LA17 Address bit 18

C8 LA16 Address bit 17

C9 /MEMR Memory Read (Active on all memory read cycles)

C10 /MEMW Memory Write (Active on all memory write cycles)

C11 SD08 Data bit 8

C12 SD09 Data bit 9

C13 SD10 Data bit 10

C14 SD11 Data bit 11

C15 SD12 Data bit 12

C16 SD13 Data bit 13

C17 SD14 Data bit 14

C18 SD15 Data bit 15

D1 /MEMCS16

Page 7 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

Memory 16-bit chip select (1 wait, 16-bit memory
cycle)

D2 /IOCS16 I/O 16-bit chip select (1 wait, 16-bit I/O cycle)

D3 IRQ10 Interrupt Request 10

D4 IRQ11 Interrupt Request 11

D5 IRQ12 Interrupt Request 12

D6 IRQ15 Interrupt Request 15

D7 IRQ14 Interrupt Request 14

D8 /DACK0 DMA Acknowledge 0

D9 DRQ0 DMA Request 0

D10 /DACK5 DMA Acknowledge 5

D11 DRQ5 DMA Request 5

D12 /DACK6 DMA Acknowledge 6

D13 DRQ6 DMA Request 6

D14 /DACK7 DMA Acknowledge 7

D15 DRQ7 DMA Request 7

D16 +5 V

D17 /MASTER Used with DRQ to gain control of system

D18 GND Ground

Notes:

◾ Direction is Motherboard relative ISA-Cards.
◾ B8 was /CARD SLCDTD on the XT. Card selected, activated by cards in XT's slot J8

Technical

This file is designed to give a basic overview of the bus found in most IBM clone computers, often
referred to as the XT or AT bus. The AT version of the bus is upwardly compatible, which means that
cards designed to work on an XT bus will work on an AT bus. This bus was produced for many years
without any formal standard. In recent years, a more formal standard called the ISA bus (Industry
Standard Architecture) has been created, with an extension called the EISA (Extended ISA) bus also
now as a standard. The EISA bus extensions will not be detailed here.

This file is not intended to be a thorough coverage of the standard. It is for informational purposes only,
and is intended to give designers and hobbyists sufficient information to design their own XT and AT
compatible cards.

Physical Design

ISA cards can be either 8-bit or 16-bit. 8-bit cards only uses the first 62 pins and 16-bit cards uses all 98

Page 8 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

pins. Some 8-bit cards uses some of the 16-bit extension pins to get more interrupts.

8-bit card

 (at the card)

 (at the computer)

16-bit card

 (at the card)

 (at the computer)

Signal Descriptions

+5, -5, +12, -12

Page 9 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

Power supplies. -5 is often not implemented.

AEN

Address Enable. This is asserted when a DMAC has control of the bus. This prevents an I/O device from
responding to the I/O command lines during a DMA transfer. When AEN is active, the DMA Controller
has control of the address bus as the memory and I/O read/write command lines.

BALE

Bus Address Latch Enable. The address bus is latched on the rising edge of this signal. The address on
the SA bus is valid from the falling edge of BALE to the end of the bus cycle. Memory devices should
latch the LA bus on the falling edge of BALE. Some references refer to this signal as Buffered Address
Latch Enable, or just Address Latch Enable (ALE). The Buffered-Address Latch Enable is used to latch
SA0-19 on the falling edge. This signal is forced high during DMA cycles.

BCLK

Bus Clock, 33% Duty Cycle. Frequency Varies. 4.77 to 8 MHz typical. 8.3 MHz is specified as the
maximum, but many systems allow this clock to be set to 12 MHz and higher.

DACKx

DMA Acknowledge. The active-low DMA Acknowledge 0 to 3 and 5 to 7 are the corresponding
acknowledge signals for DRQ 0-3, 5-7.

DRQx

DMA Request. These signals are asynchronous channel requests used by I/O channel devices to gain
DMA service. DMA request channels 0-3 are for 8-bit data transfer. DAM request channels 5-7 are for
16-bit data transfer. DMA request channel 4 is used internally on the system board. DMA requests
should be held high until the corresponding DACK line goes active. DMA requests are serviced in the
following priority sequence:
High: DRQ 0, 1, 2, 3, 5, 6, 7 Lowest

IOCS16

I/O size 16. Generated by a 16 bit slave when addressed by a bus master. The active-low I/O Chip Select
16 indicates that the current transfer is a 1 wait state, 16 bit I/O cycle. Open Collector.

I/O CH CK

Channel Check. A low signal generates an NMI. The NMI signal can be masked on a PC, externally to
the processor (of course). Bit 7 of port 70(hex) (enable NMI interrupts) and bit 3 of port 61 (hex)
(recognition of channel check) must both be set to zero for an NMI to reach the cpu. The I/O Channel
Check is an active-low signal which indicates that a parity error exists in a device on the I/O channel.

Page 10 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

I/O CH RDY

Channel Ready. Setting this low prevents the default ready timer from timing out. The slave device may
then set it high again when it is ready to end the bus cycle. Holding this line low for too long (15
microseconds, typical) can prevent RAM refresh cycles on some systems. This signal is called
IOCHRDY (I/O Channel Ready) by some references. CHRDY and NOWS should not be used
simultaneously. This may cause problems with some bus controllers. This signal is pulled low by a
memory or I/O device to lengthen memory or I/O read/write cycles. It should only be held low for a
minimum of 2.5 microseconds.

IOR

The I/O Read is an active-low signal which instructs the I/O device to drive its data onto the data bus,
SD0-SD15.

IOW

The I/O Write is an active-low signal which instructs the I/O device to read data from the data bus, SD0-
SD15.

IRQx

Interrupt Request. IRQ2 has the highest priority. IRQ 10-15 are only available on AT machines, and are
higher priority than IRQ 3-7. The Interrupt Request signals which indicate I/O service attention. They
are prioritized in the following sequence: Highest IRQ 9(2),10,11,12,14,3,4,5,6,7

LAxx

Latchable Address lines. Combine with the lower address lines to form a 24 bit address space (16 MB)
These unlatched address signals give the system up to 16 MB of address ability. The are valid when
"BALE" is high.

MASTER

16 bit bus master. Generated by the ISA bus master when initiating a bus cycle. This active-low signal is
used in conjunction with a DRQ line by a processor on the I/O channel to gain control of the system.
The I/O processor first issues a DRQ, and upon receiving the corresponding DACK, the I/O processor
may assert MASTER, which will allow it to control the system address, data and control lines. This
signal should not be asserted for more than 15 microseconds, or system memory may be corrupted du to
the lack of memory refresh activity.

MEMCS16

The active-low Memory Chip Select 16 indicates that the current data transfer is a 1 wait state, 16 bit
data memory cycle.

Page 11 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

MEMR

The Memory Read is an active-low signal which instructs memory devices to drive data onto the data
bus SD0-SD15. This signal is active on all memory read cycles.

MEMW

The Memory Write is an active-low signal which instructs memory devices to store data present on the
data bus SD0-SD15. This signal is active on all memory write cycles.

NOWS

No Wait State. Used to shorten the number of wait states generated by the default ready timer. This
causes the bus cycle to end more quickly, since wait states will not be inserted. Most systems will ignore
NOWS if CHRDY is active (low). However, this may cause problems with some bus controllers, and
both signals should not be active simultaneously.

OSC

Oscillator, 14.31818 MHz, 50% Duty Cycle. Frequency varies. This was originally divided by 3 to
provide the 4.77 MHz cpu clock of early PCs, and divided by 12 to produce the 1.19 MHz system clock.
Some references have placed this signal as low as 1 MHz (possibly referencing the system clock), but
most modern systems use 14.318 MHz.
This frequency (14.318 MHz) is four times the television colorburst frequency. Refresh timing on many
PC's is based on OSC/18, or approximately one refresh cycle every 15 microseconds. Many modern
motherboards allow this rate to be changed, which frees up some bus cycles for use by software, but also
can cause memory errors if the system RAM cannot handle the slower refresh rates.

REFRESH

Refresh. Generated when the refresh logic is bus master. This active-low signal is used to indicate a
memory refresh cycle is in progress. An ISA device acting as bus master may also use this signal to
initiate a refresh cycle.

RESET

This signal goes low when the machine is powered up. Driving it low will force a system reset. This
signal goes high to reset the system during powerup, low line-voltage or hardware reset. ??????????????

SA0-SA19

System Address Lines, tri-state. The System Address lines run from bit 0 to bit 19. They are latched on
to the falling edge of "BALE".

SBHE

Page 12 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

System Bus High Enable, tri-state. Indicates a 16 bit data transfer. The System Bus High Enable
indicates high byte transfer is occurring on the data bus SD8-SD15. This may also indicate an 8 bit
transfer using the upper half of the bus data (if an odd address is present).

SD0-SD16

System Data lines, or Standard Data Lines. They are bidrectional and tri-state. On most systems, the data
lines float high when not driven. These 16 lines provide for data transfer between the processor, memory
and I/O devices.

SMEMR

System Memory Read Command line. Indicates a memory read in the lower 1 MB area. This System
Memory Read is an active-low signal which instructs memory devices to drive data onto the data bus
SD0-SD15. This signal is active only when the memory address is within the lowest 1MB of memory
address space.

SMEMW

System Memory Write Commmand line. Indicates a memory write in the lower 1 MB area. The System
Memory Write is an active-low signal which instructs memory devices to store data preset on the data
bus SD0-SD15. This signal is active only when the memory address is within the lowest 1MB of
memory address space.

T/C

Terminal Count. Notifies the cpu that that the last DMA data transfer operation is complete. Terminal
Count provides a pulse when the terminal count for any DMA channel is reached.

8 Bit Memory or I/O Transfer Timing Diagram (4 wait states shown)

 __ __ __ __ __ __ __
BCLK ___| |___| |___| |__| |___| |___| |___| |__
 W1 W2 W3 W4
 __
BALE _______| |_______________________________________

AEN __

SA0-SA19 ---------<______________________________________>-
 _____________ _____
Command Line |______________________________|
(IORC,IOWC,
SMRDC, or SMWTC)

SD0-SD7 ---------------------------------------<_____>----
(READ)

SD0-SD7 ---------<___________________________________>----
(WRITE)

Page 13 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

Note: W1 through W4 indicate wait cycles.

BALE is placed high, and the address is latched on the SA bus. The slave device may safely sample the
address during the falling edge of BALE, and the address on the SA bus remains valid until the end of
the transfer cycle. Note that AEN remains low throughout the entire transfer cycle.

The command line is then pulled low (IORC or IOWC for I/O commands, SMRDSC or SMWTC for
memory commands, read and write respectively). For write operations, the data remains on the SD bus
for the remainder of the transfer cycle. For read operations, the data must be valid on the falling edge of
the last cycle.

NOWS is sampled at the midpoint of each wait cycle. If it is low, the transfer cycle terminates without
further wait states. CHRDY is sampled during the first half of the clock cycle. If it is low, further wait
cycles will be inserted.

The default for 8 bit transfers is 4 wait states. Some computers allow the number of default wait states to
be changed.

16 Bit Memory or I/O Transfer Timing Diagram (1 wait state shown)

 __ __ __ __ __ __
BCLK ___| |___| |___| |__| |___| |___| |_
AEN [2] __

LA17-LA23 -------<_____________>-[1]-----------------

 __
BALE ______________| |________________________

 ________________ _______
SBHE |__________________|

SA0-SA19 ---------------<__________________>-------

 _________________ ____________________
M16 |____|
 * * [4]

 _________________ ___________
IO16 [3] |_____________|
 *

 _________________ ___________
Command Line |____________|
(IORC,IOWC,
MRDC, or MWTC)

SD0-SD7 ---------------------------<____>---------
(READ)

SD0-SD7 -----------------<______________>---------
(WRITE)

An asterisk (*) denotes the point where the signal is sampled.

[1] The portion of the address on the LA bus for the NEXT cycle may now be placed on the bus. This is
used so that cards may begin decoding the address early. Address pipelining must be active.

Page 14 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

[2] AEN remains low throughout the entire transfer cycle, indicating that a normal (non-DMA) transfer
is occurring.

[3] Some bus controllers sample this signal during the same clock cycle as M16, instead of during the
first wait state, as shown above. In this case, IO16 needs to be pulled low as soon as the address is
decoded, which is before the I/O command lines are active.

[4] M16 is sampled a second time, in case the adapter card did not active the signal in time for the first
sample (usually because the memory device is not monitoring the LA bus for early address information,
or is waiting for the falling edge of BALE).

16 bit transfers follow the same basic timing as 8 bit transfers. A valid address may appear on the LA
bus prior to the beginning of the transfer cycle. Unlike the SA bus, the LA bus is not latched, and is not
valid for the entire transfer cycle (on most computers). The LA bus should be latched on the falling edge
of BALE. Note that on some systems, the LA bus signals will follow the same timing as the SA bus. On
either type of system, a valid address is present on the falling edge of BALE.

I/O adapter cards do not need to monitor the LA bus or BALE, since I/O addresses are always within the
address space of the SA bus.

SBHE will be pulled low by the system board, and the adapter card must respond with IO16 or M16 at
the appropriate time, or else the transfer will be split into two separate 8 bit transfers. Many systems
expect IO16 or M16 before the command lines are valid. This requires that IO16 or M16 be pulled low
as soon as the address is decoded (before it is known whether the cycle is I/O or Memory). If the system
is starting a memory cycle, it will ignore IO16 (and vice-versa for I/O cycles and M16).

For read operations, the data is sampled on the rising edge of the last clock cycle. For write operations,
valid data appears on the bus before the end of the cycle, as shown in the timing diagram. While the
timing diagram indicates that the data needs to be sampled on the rising clock, on most systems it
remains valid for the entire clock cycle.

The default for 16 bit transfers is 1 wait state. This may be shortened or lengthened in the same manner
as 8 bit transfers, via NOWS and CHRDY. Many systems only allow 16 bit memory devices (and not
I/O devices) to transfer using 0 wait states (NOWS has no effect on 16 bit I/O cycles).

SMRDC/SMWTC follow the same timing as MRDC/MWTC respectively when the address is within
the lower 1 MB. If the address is not within the lower 1 MB boundary, SMRDC/SMWTC will remain
high during the entire cycle.

It is also possible for an 8 bit bus cycle to use the upper portion of the bus. In this case, the timing will
be similar to a 16 bit cycle, but an odd address will be present on the bus. This means that the bus is
transferring 8 bits using the upper data bits (SD8-SD15).

Shortening or Lengthening the bus cycle

BCLK W W W W
 _ __ __ __ __ __ __ __ __ __ __ __
 |__| |__| |__| |__| |__| |__| |__| |__| |__| |__| |__| |__

 |--Transfer 1-----|----Transfer 2---------|----Transfer 3---|

Page 15 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

BALE
 __ __ __ __
________| |______________| |____________________| |______________|
SBHE
_________ _______________________
 |__________________|__________________|
SA0-SA19
 _________________ _____________________ _________________
----------<_________________><_____________________><_________________>
IO16
___________ ___ ___________________________
 |_____________| |_____________|
 * *

CHRDY
________________________________ _______________________________
 |______|
 * * * [1]

NOWS
__ _____
 |__________|
 * [2]
IORC
______________ _______ _______ ____
 |_________| |_______________| |_________|
SD0-SD15
 ____ ____ ____
--------------------<____>------------------<____>------------<____>---
 * * *

An asterisk (*) denotes the point where the signal is sampled.
W=Wait Cycle

This timing diagram shows three different transfer cycles. The first is a 16 bit standard I/O read. This is
followed by an almost identical 16 bit I/O read, with one wait state inserted. The I/O device pulls
CHRDY low to indicate that it is not ready to complete the transfer (see [1]). This inserts a wait cycle,
and CHRDY is again sampled. At this second sample, the I/O device has completed its operation and
released CHRDY, and the bus cycle now terminates. The third cycle is an 8 bit transfer, which is
shortened to 1 wait state (the default is 4) by the use of NOWS.

I/O Port Addresses

Note: Only the first 10 address lines are decoded for I/O operations. This limits the I/O address space to
address 3FF (hex) and lower. Some systems allow for 16 bit I/O address space, but may be limited due
to some I/O cards only decoding 10 of these 16 bits.

Port (hex) Port Assignments

000-00F DMA Controller

010-01F DMA Controller (PS/2)

020-02F Master Programmable Interrupt Controller (PIC)

030-03F Slave PIC

040-05F Programmable Interval Timer (PIT)

060-06F Keyboard Controller

Page 16 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

070-071 Real Time Clock

080-083 DMA Page Register

090-097 Programmable Option Select (PS/2)

0A0-0AF PIC #2

0C0-0CF DMAC #2

0E0-0EF reserved

0F0-0FF Math coprocessor, PCJr Disk Controller

100-10F Programmable Option Select (PS/2)

110-16F AVAILABLE

170-17F Hard Drive 1 (AT)

180-1EF AVAILABLE

1F0-1FF Hard Drive 0 (AT)

200-20F Game Adapter

210-217 Expansion Card Ports

220-26F AVAILABLE

278-27F Parallel Port 3

280-2A1 AVAILABLE

2A2-2A3 clock

2B0-2DF EGA/Video

2E2-2E3 Data Acquisition Adapter (AT)

2E8-2EF Serial Port COM4

2F0-2F7 Reserved

2F8-2FF Serial Port COM2

300-31F Prototype Adapter, Periscope Hardware
Debugger

320-32F AVAILABLE

330-33F Reserved for XT/370

340-35F AVAILABLE

360-36F Network

370-377 Floppy Disk Controller

378-37F Parallel Port 2

380-38F SDLC Adapter

390-39F Cluster Adapter

3A0-3AF reserved

3B0-3BF Monochrome Adapter

Page 17 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

3BC-3BF Parallel Port 1

3C0-3CF EGA/VGA

3D0-3DF Color Graphics Adapter

3E0-3EF Serial Port COM3

3F0-3F7 Floppy Disk Controller

3F8-3FF Serial Port COM1

Soundblaster cards usually use I/O ports 220-22F.
Data acquisition cards frequently use 300-31F.

DMA Read and Write

The ISA bus uses two DMA controllers (DMAC) cascaded together. The slave DMAC connects to the
master DMAC via DMA channel 4 (channel 0 on the master DMAC). The slave therefore gains control
of the bus through the master DMAC. On the ISA bus, the DMAC is programmed to use fixed priority
(channel 0 always has the highest priority), which means that channel 0-4 from the slave have the
highest priority (since they connect to the master channel 0), followed by channels 5-7 (which are
channel 1-3 on the master).

The DMAC can be programmed for read transfers (data is read from memory and written to the I/O
device), write transfers (data is read from the I/O device and written to memory), or verify transfers
(neither a read or a write - this was used by DMA CH0 for DRAM refresh on early PCs).

Before a DMA transfer can take place, the DMA Controller (DMAC) must be programmed. This is done
by writing the start address and the number of bytes to transfer (called the transfer count) and the
direction of the transfer to the DMAC. After the DMAC has been programmed, the device may activate
the appropriate DMA request (DRQx) line.

Slave DMA Controller

I/O Port

0000
DMA CH0 Memory Address Register

Contains the lower 16 bits of the memory address, written as two consecutive bytes.

0001
DMA CH0 Transfer Count

Contains the lower 16 bits of the transfer count, written as two consecutive bytes.

0002 DMA CH1 Memory Address Register

0003 DMA CH1 Transfer Count

0004 DMA CH2 Memory Address Register

0005 DMA CH2 Transfer Count

0006 DMA CH3 Memory Address Register

Page 18 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

0007 DMA CH3 Transfer Count

0008

DMAC Status/Control Register

Status (I/O read) bits 0-3: Terminal Count, CH 0-3

◾ bits 4-7: Request CH0-3

Control (write)

◾ bit 0: Mem to mem enable (1 = enabled)
◾ bit 1: ch0 address hold enable (1 = enabled)
◾ bit 2: controller disable (1 = disabled)
◾ bit 3: timing (0 = normal, 1 = compressed)
◾ bit 4: priority (0 = fixed, 1 = rotating)
◾ bit 5: write selection (0 = late, 1 = extended)
◾ bit 6: DRQx sense asserted (0 = high, 1 = low)
◾ bit 7: DAKn sense asserted (0 = low, 1 = high)

0009

Software DRQn Request

◾ bits 0-1: channel select (CH0-3)
◾ bit 2: request bit (0 = reset, 1 = set)

000A

DMA mask register

◾ bits 0-1: channel select (CH0-3)
◾ bit 2: mask bit (0 = reset, 1 = set)

000B

DMA Mode Register

◾ bits 0-1: channel select (CH0-3)
◾ bits 2-3: 00 = verify transfer, 01 = write transfer, 10 = read transfer, 11 = reserved
◾ bit 4: Auto init (0 = disabled, 1 = enabled)
◾ bit 5: Address (0 = increment, 1 = decrement)
◾ bits 6-7: 00 = demand transfer mode, 01 = single transfer mode, 10 = block transfer mode,

11 = cascade mode

000C

DMA Clear Byte Pointer

Writing to this causes the DMAC to clear the pointer used to keep track of 16 bit data transfers
into and out of the DMAC for hi/low byte sequencing.

000D DMA Master Clear (Hardware Reset)

000E DMA Reset Mask Register - clears the mask register

000F DMA Mask Register

◾ bits 0-3: mask bits for CH0-3 (0 = not masked, 1 = masked)

Page 19 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

0081 DMA CH2 Page Register (address bits A16-A23)

0082 DMA CH3 Page Register

0083 DMA CH1 Page Register

0087 DMA CH0 Page Register

0089 DMA CH6 Page Register

008A DMA CH7 Page Register

008B DMA CH5 Page Register

Master DMA Controller

I/O Port

00C0
DMA CH4 Memory Address Register

Contains the lower 16 bits of the memory address, written as two consecutive bytes.

00C2
DMA CH4 Transfer Count

Contains the lower 16 bits of the transfer count, written as two consecutive bytes.

00C4 DMA CH5 Memory Address Register

00C6 DMA CH5 Transfer Count

00C8 DMA CH6 Memory Address Register

00CA DMA CH6 Transfer Count

00CC DMA CH7 Memory Address Register

00CE DMA CH7 Transfer Count

00D0

DMAC Status/Control Register

Status (I/O read):

◾ bits 0-3: Terminal Count, CH 4-7
◾ bits 4-7: Request CH4-7

Control (write):

◾ bit 0: Mem to mem enable (1 = enabled)
◾ bit 1: ch0 address hold enable (1 = enabled)
◾ bit 2: controller disable (1 = disabled)
◾ bit 3: timing (0 = normal, 1 = compressed)
◾ bit 4: priority (0 = fixed, 1 = rotating)
◾ bit 5: write selection (0 = late, 1 = extended)
◾ bit 6: DRQx sense asserted (0 = high, 1 = low)
◾ bit 7: DAKn sense asserted (0 = low, 1 = high)

Page 20 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

00D2 Software DRQn Request

◾ bits 0-1: channel select (CH4-7)
◾ bit 2: request bit (0 = reset, 1 = set)

00D4

DMA mask register

◾ bits 0-1: channel select (CH4-7)
◾ bit 2: mask bit (0 = reset, 1 = set)

00D6

DMA Mode Register

◾ bits 0-1: channel select (CH4-7)
◾ bits 2-3: 00 = verify transfer, 01 = write transfer, 10 = read transfer, 11 = reserved
◾ bit 4: Auto init (0 = disabled, 1 = enabled)
◾ bit 5: Address (0 = increment, 1 = decrement)
◾ bits 6-7: 00 = demand transfer mode, 01 = single transfer mode, 10 = block transfer

mode, 11 = cascade mode

00D8

DMA Clear Byte Pointer

Writing to this causes the DMAC to clear the pointer used to keep track of 16 bit data transfers
into and out of the DMAC for hi/low byte sequencing.

00DA DMA Master Clear (Hardware Reset)

00DC DMA Reset Mask Register - clears the mask register

00DE
DMA Mask Register

◾ bits 0-3: mask bits for CH4-7 (0 = not masked, 1 = masked)

Single Transfer Mode

The DMAC is programmed for transfer. The DMA device requests a transfer by driving the appropriate
DRQ line high. The DMAC responds by asserting AEN and acknowledges the DMA request through the
appropriate DAK line. The I/O and memory command lines are also asserted. When the DMA device
sees the DAK signal, it drops the DRQ line.

The DMAC places the memory address on the SA bus (at the same time as the command lines are
asserted), and the device either reads from or writes to memory, depending on the type of transfer. The
transfer count is incremented, and the address incremented/decremented. DAK is de-asserted. The cpu
now once again has control of the bus, and continues execution until the I/O device is once again ready
for transfer. The DMA device repeats the procedure, driving DRQ high and waiting for DAK, then
transferring data. This continues for a number of cycles equal to the transfer count. When this has been
completed, the DMAC signals the cpu that the DMA transfer is complete via the TC (terminal count)
signal.

Page 21 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

 __ __ __ __ __ __
BCLK ___| |___| |___| |__| |___| |___| |___

DRQx _| |___________________________________

AEN ____| |________

 _______ ________
DAKx |___________________________|

SA0-SA15 -------<____________________________>-------
 ___________ ____________
Command Line |___________________|
(IORC, MRDC)

SD0-SD7 ----------------------<_____________>-------
(READ)

SD0-SD7 -------<____________________________>-------
(WRITE)

Block Transfer Mode

The DMAC is programmed for transfer. The device attempting DMA transfer drives the appropriate
DRQ line high. The motherboard responds by driving AEN high and DAK low. This indicates that the
DMA device is now the bus master. In response to the DAK signal, the DMA device drops DRQ. The
DMAC places the address for DMA transfer on the address bus. Both the memory and I/O command
lines are asserted (since DMA involves both an I/O and a memory device). AEN prevents I/O devices
from responding to the I/O command lines, which would not result in proper operation since the I/O
lines are active, but a memory address is on the address bus. The data transfer is now done (memory
read or write), and the DMAC increments/decrements the address and begins another cycle. This
continues for a number of cycles equal to the DMAC transfer count. When this has been completed, the
terminal count signal (TC) is generated by the DMAC to inform the cpu that the DMA transfer has been
completed.

Note: Block transfer must be used carefully. The bus cannot be used for other things (like RAM refresh)
while block mode transfers are being done.

Demand Transfer Mode

The DMAC is programmed for transfer. The device attempting DMA transfer drives the appropriate
DRQ line high. The motherboard responds by driving AEN high and DAK low. This indicates that the
DMA device is now the bus master. Unlike single transfer and block transfer, the DMA device does not
drop DRQ in response to DAK. The DMA device transfers data in the same manner as for block
transfers. The DMAC will continue to generate DMA cycles as long as the I/O device asserts DRQ.
When the I/O device is unable to continue the transfer (if it no longer had data ready to transfer, for
example), it drops DRQ and the cpu once again has control of the bus. Control is returned to the DMAC
by once again asserting DRQ. This continues until the terminal count has been reached, and the TC
signal informs the cpu that the transfer has been completed.

Page 22 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

Interrupts on the ISA bus

Name Interrupt Description

NMI 2 Parity Error, Mem Refresh

IRQ0 8 8253 Channel 0 (System Timer)

IRQ1 9 Keyboard

IRQ2 A Cascade from slave PIC

IRQ3 B COM2

IRQ4 C COM1

IRQ5 D LPT2

IRQ6 E Floppy Drive Controller

IRQ7 F LPT1

IRQ8 F Real Time Clock

IRQ9 F Redirection to IRQ2

IRQ10 F Reserved

IRQ11 F Reserved

IRQ12 F Mouse Interface

IRQ13 F Coprocessor

IRQ14 F Hard Drive Controller

IRQ15 F Reserved

IRQ0,1,2,8, and 13 are not available on the ISA bus.

The IBM PC and XT had only a single 8259 interrupt controller. The AT and later machines have a
second interrupt controller, and the two are used in a master/slave combination. IRQ2 and IRQ9 are the
same pin on most ISA systems. Interrupts on most systems may be either edge triggered or level
triggered. The default is usually edge triggered, and active high (low to high transition). The interrupt
level must be held high until the first interrupt acknowledge cycle (two interrupt acknowledge bus
cycles are generated in response to an interrupt request).

The software aspects of interrupts and interrupt handlers is intentionally omitted from this document,
due to the numerous syntactical differences in software tools and the fact that adequate documentation
of this topic is usually provided with developement software.

Bus Mastering

An ISA device may take control of the bus, but this must be done with caution. There are no safety
mechanisms involved, and so it is easily possible to crash the entire system by incorrectly taking control
of the bus. For example, most systems require bus cycles for DRAM refresh. If the ISA bus master does
not relinquish control of the bus or generate its own DRAM refresh cycles every 15 microseconds, the

Page 23 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

system RAM can become corrupted. The ISA adapter card can generate refresh cycles without
relinquishing control of the bus by asserting REFRESH. MRDC can be then monitored to determine
when the refresh cycle ends.

To take control of the bus, the device first asserts its DRQ line. The DMAC sends a hold request to the
cpu, and when the DMAC receives a hold acknowledge, it asserts the appropriate DAK line
corresponding to the DRQ line asserted. The device is now the bus master. AEN is asserted, so if the
device wishes to access I/O devices, it must assert MASTER16 to release AEN. Control of the bus is
returned to the system board by releasing DRQ.

Contributions

◾ Joakim Ögren
◾ Niklas Edmundsson
◾ Mark Sokos (mailto:sokos@desupernet.net)
◾ Pieter Hollants (mailto:fxmts205@rz.uni-frankfurt.de)

Sources

◾ Mark Sokos ISA page (http://users.supernet.com/sokos/isa.txt)
◾ "ISA System Architecture, 3rd Edition" by Tom Shanley and Don Anderson ISBN 0-201-40996-8
◾ "Eisa System Architecture, 2nd Edition" by Tom Shanley and Don Anderson ISBN 0-201-

40995-X
◾ "Microcomputer Busses" by R.M. Cram ISBN 0-12-196155-9
◾ HelpPC v2.10 Quick Reference Utility, by David Jurgens
◾ ZIDA 80486 Mother Board User's Manual, OPTi 486, 82C495sx

UNIQ6f7b3fe46a9b364a-keydata-00000000-QINU

Retrieved from "http://www.hardwarebook.info/index.php?title=ISA&oldid=8429"
Categories: Connector Bus

◾ |
◾ Page |
◾ Discussion |
◾ View source |
◾ History |

◾ |
◾ What links here |
◾ Related changes |
◾ Special pages |

◾ Help |
◾ About HwB |

Page 24 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

◾ Disclaimers

Page 25 of 25ISA - HwB

4/6/2017mhtml:file://C:\Users\1231189552C\Desktop\Linux-SBC\archive\ISA - HwB.mht

